• 0
Votes
name

A PHP Error was encountered

Severity: Notice

Message: Undefined index: userid

Filename: views/question.php

Line Number: 195

Backtrace:

File: /home/u125378470/domains/lawhelpguru.org/public_html/application/views/question.php
Line: 195
Function: _error_handler

File: /home/u125378470/domains/lawhelpguru.org/public_html/application/controllers/Questions.php
Line: 416
Function: view

File: /home/u125378470/domains/lawhelpguru.org/public_html/index.php
Line: 315
Function: require_once

name Punditsdkoslkdosdkoskdo

Multi Looping and Multi Splitting of Pandas DataFrame

<button aria-describedby="--stacks-s-tooltip-8o22sjz4" aria-label="Bookmark" aria-pressed="false" class="js-bookmark-btn s-btn s-btn__unset c-pointer py4 js-gps-track" data-controller="s-tooltip" data-gps-track="post.click({ item: 1, priv: 0, post_type: 1 })" data-s-tooltip-placement="right" data-selected-classes="fc-yellow-600"></button><svg aria-hidden="true" class="mln2 mr0 svg-icon iconHistory" height="18" viewbox="0 0 19 18" width="19"></svg>

 

I have a CSV file that contains 22, 000 rows of author names. Each row has multiple author names delimited by ';'. Each author name in a row is in 'lastName, firstName' order. I want to split them and append to new columns like shown below.

Below is a raw dataset preview:

+------------------------------------+
|           author_full_name         |
+------------------------------------+
| Kahana, M J; Adler, M              |
|Gautam, H; Potdar, G G; Vidya, T N C|
+------------------------------------+

Below is the expected output of the above preview:

+------------------------------------+------------------------------------------+
|           author_full_name         | author_first_names| author_last_names    |
+------------------------------------+------------------------------------------+
| Kahana, M J; Adler, M              |      M J; M       | Kahana; Adler        |
|Gautam, H; Potdar, G G; Vidya, T N C|     H; G G; T N C | Gautam; Potdar; Vidya|
+------------------------------------+------------------------------------------+

How can I go about doing the same in pandas?